Flux driven turbulence on open field lines
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Turbulence in the scrape-off layer (SOL) is investigated using a 2D fluid model
for interchange instability. A constant driving flux governs the dynamics of
both equilibrium and fluctuating parts of density and electric potential. The
turbulent flux exhibits intermittent bursts, called avalanches. These events
account for a significant part of the total transport, and lead to non-gaussian
probability density functions. The time average density profile looks expo-
nential, and the SOL width increases weakly with the driving source (scaling
exponent 2/9). The dynamics of zonal flows is found to strongly depend on
viscosity v. The lower v, the larger the magnitude of the velocity shear fluctu-
ations. Ultimately, a large shearing significantly reduces the correlation length
of the fluctuations, and hence the transport. Finally, the impact on turbu-
lence of a local biasing is investigated, possibly modeling Langmuir probe
measurements. A negative biasing, leading to the extraction of up to 75% of
the ion saturation current, is found to strongly modify the dynamics of the
transport, even outside the exact location of the biasing. At the probe, the
time averaged density decreases by a factor 4, and the large amplitude low fre-
quency fluctuations of the density field — strong avalanches — are suppressed.
The electric potential fluctuations exhibit essentially a shift toward larger fre-
quencies. These results put forward the possible strong departure between
Langmuir probe turbulence measurements and the "real” ambiant turbulence,
as well as possible mismatch in the measurement of the ion saturation current.



1 Introduction

As for core plasma, it is well known that turbulent transport plays an important role
in the plasma Scrape-Off Layer since it governs the cross-field tranport. It interesting
to note, in particular, that the SOL width is generally understood as characterizing the
balance between parallel tranport and cross-field transport. As a consequence, the SOL
width is such that it is equally distant from the Last Closed Magnetic Surface via cross-
field tranport as to the wall via parallel tranport. From this picture, cross-field transport
is dominant within the first e-folding length of the SOL. Although this region of the
plasma is particularly suited to investigate SOL turbulence with probe measurements
[1], there is still a significant gap to fill in order to bridge the SOL modeling to the
turbulence measurements [2]. In fact, the problem of cross-field transport also interferes
with the Langmuir probe measurements themselves [3]. Last but not least, the SOL width
governed by the cross-field transport plays a crucial role in the design of next step devices
due to the very large power handled in these devices. As such, accurate values and an
extrapolation law are badly needed. Unfortunately the attemps in that direction have
not been successful. More worrying, recent data seem to indicate the existence of still
narrower SOL width [4]. The need for theoretical investigation is clearly needed to step
ahead in this complex problem.

A significant change in the analysis of plasma turbulence has taken place as the drive
of the system was considered to be a flux rather than a gradient. Indeed, the standard
analysis of systems out of thermodynamical equilibrium aims at determining the flux
resulting from an imposed gradient. The latter characterizes the ”distance” from the
thermodynamical equilibrium. Let us consider the density field and hence the relationship
between the particle flux and density. In all fusion plasmas, the system is driven away from
equilibrium by the particle injection rate and particle recycling. As such, our systems are
flux driven rather than gradient driven. This change in driving force leads to significant
modifications in the dynamics of the turbulent response, with continuous reorganisation of
the turbulent eddies and localy, repeated evolution from the linear stage to the nonlinear
saturation of the turbulence. In addition to this change in approach, the interest in the
flows self generated by the turbulence has increased [5] since these flows, namely the Zonal
Flows, seem to play a major role in the non-linear saturation of turbulence [6]. As a result
of these two inputs, turbulent models exhibit intermittent behaviour with avalanche-like
propagation — related to front propagation [7] and/or streamers [8] — and a large variety
of dynamics, as predicted theoretically [9]. This behaviour is observed in numerous fluid
models for edge and core turbulence [10, 11, 12, 13], and has also been tackled for SOL
turbulence [14]. Experimental evidence of large scale transport is also reported [15].

In the present paper, we address issues that are at the crux of present experimental
investigation of the SOL. In section 2, we review the status of the 2-D fluid model that
is used. The scaling of the SOL width with increasing source term is presented there. In
section 3, we address the difficult issue of the interplay of viscosity with the behaviour of
avalanche transport. This investigation is most important since one finds that this viscos-
ity seems to control the poloidal flows self-generated by the turbulence. Since these flows
are believed to determine the saturation level of the turbulence, one readily understands
the importance of this analysis. Finally, in section 4, we model the turbulence response
to probe ion saturation measurements.



2 Interchange instability in the SOL

2.1 Flux driven 2D model

Strong density n and electric potential 6 fluctuations are experimentally observed in the
SOL of fusion devices, accounting for the heat anomalous transport [16]. Interchange
instability is supposed to play a prominent role in this turbulent transport. Indeed, the
large sheath resistivity o) destabilises interchange electrostatic modes in the SOL, driven
by the pressure gradient in the bad curvature — Low Field Side — region [17, 18]. Following
a previous work [14] and supported by experimental observations [19], the model discussed
in this paper only considers flute-like modes, hence k| = 0. More precisely, for a SOL
between two toroidal limiters located at symmetrical poloidal angles £A#, the modes are
such that ky = 2/L) = 1/qRoAf.

A field line average then makes the problem 2-D. Further assuming a constant electron
temperature T, and cold ions yields two parameters: the normalized sheath conductivity
o) = ps/ L) and the average field line curvature g = [(1 4 s) sin A0 — sAf cos A0]2qgp, /L.
Both the normalized sheath conductivity and the curvature exhibit a p, dependence
through the ratio p,/L). The normalized system is then derived from particle and charge
conservation laws:

didt n = oynexp(A—¢)+ DVin+S
dfdt Vi¢ = oy{l —exp(A—¢)} —g 0yLog(n) +vVid (1)

where the total time derivative stands for the Lagrangian derivative d/dt = 0; + [¢,.]. n
and ¢ are the total density and electric potential, and not only their fluctuating parts.
In the SOL, the destabilising density gradient is build up by the source term, namely by
the ionization of recycling neutrals, and by the particle influx S crossing the separatrix.
Only the latter is retained here. Finally, the following normalization is adopted:

n — n/ng; o — ep/T,

r=(r—a)lps y = af/ps; t— Ot
(D, v) = (D, v)pscs

Here, the Larmor radius is defined by ps = ¢/, with Q;, = eB/m; and ¢, = (Te/mi)l/z.
The floating potential A = +Log(2m;/m.) which develops at the end points of the field
lines (the sheath), is governed by the difference between electron and ion inertia. In steady
state conditions and in the absence of any biasing, it ensures a zero current at the end
points of the field lines. Unless specified, typical numerical paramaters are o) = 2.271074,
g =>5.72107* D = 2.1072, with p, ~ 3.4107*m, ¢, = 9.810*m.s71 and Q, ~ 2.910%s71,
Box grid is 128 x 128, with 2p, per grid point. The code is solved using a predictor-
corrector method in time, and is pseudo-spectral in both directions [20]. The particle
source is constant in time and poloidally (along y), with a gaussian radial shape S(x) =
Soexp[—(z/As)?], with So = 1072 and As = L,/30. Such a treatment allows one to
investigate two separate SOL regions: a stable one, where density gradient and curvature
have opposite signs, leading to a SOL width Agor governed by collisional transport, and
the turbulent region in which curvature and d,n are colinear. The latter part is the

turbulent SOL investigated in this paper.



2.2 Transport and SOL width

Most of the dynamical properties of the system described by Eq. 1 are discussed in a
previous paper [14]. Basically, turbulent transport looks intermittent and bursty, and is
dominated by long range transport events which propagate almost ballistically and called
avalanches. Such a dynamics is associated with convective cells mainly elongated radially,
reminiscent of streamers [8]. The probability density function (PDF) of the equilibrium
(i.e. poloidally averaged) radial flux at a given location is shown on Fig. 1. It can
be described by two distinct components: a gaussian centered on zero — and hence of
vanishing flux — and a log-normal distribution, accounting for the distribution tail which
extends toward large outbursts. The gaussian shape is expected to model the underlying
diffusive-like transport, governed by both small-size turbulent eddies and the collisional
transport associated to D. Surprisingly, the most probable equilibrium flux is negative.
Such a decomposition of the PDF allows one to quantify the impact of rare but large
events on the overall transport. In this case, it turns out that 44% of the total flux is
carried out by events whose probability lies outside the 40 domain. o refers here to the
mean deviation of the gaussian. The intermittent character is also reported experimentally
[21, 22]. Exponential tails are predicted theoretically for the local turbulent radial flux,
provided density and electric potential fluctuations are gaussian [23]. Such a condition
is however not fullfiled in the 2D interchange turbulence studied here. Indeed, local
fluctuations 7 and ¢ exhibit non-gaussian PDFs. PDFs of radial and poloidal density
gradients are plotted on Fig. 2. The PDF of d,n is asymmetric, with an exponential
tail extending toward strong unstable gradients. These gradient fronts are well correlated
with the avalanche-like transport events responsible for a similar tail on the PDF of the
flux. On the contrary, the PDF of the poloidal density gradient looks rather gaussian,
suggesting the poloidal transport is diffusive-like.

The time averaged and instantaneous density profiles (n(x)) and n(x, ), both recorded
in the saturated phase of the non-linear regime, are shown on Fig. 3. The source profile
is shown as well. n looks rather smooth, and exhibits an exponential decay although
turbulent transport is not diffusive-like. Interestingly enough, radial convective transport
also leads to an exponential density profile. Should the parallel transport be balanced by
convective turbulent transport of effective velocity v, s, then the equilibrium time average
density is exponential with an e-folding length of Asor = LHveff/cs. In the case presented
on Fig. 3, the SOL e-folding length is of the order of Asor, & 45p, in the turbulent region,
about 10 times larger than the one in the stable SOL, on the left handside of the source.
Turbulent activity can also lead transiently to very steep gradients, as exemplified on Fig.
3. Gradient lengths equal to the one generated by collisional transport develop locally.
These gradient fronts are associated to avalanche-like events.

An important issue for fusion deals with the scaling of Agpor with the driving flux
I'y = foLm S(x)dx. Indeed, present day technical limitations of fusion devices include the
limited capability of plasma facing components to extract a large amount of power. In
that respect, spreading the outward power flux over a large region is highly beneficial. As
such, the turbulent SOL a factor 10 times larger than the classical SOL allows to reduce
the energy flux by a factor 10. Figure 4 shows how the SOL width Agpr increases with I,
all other parameters remaining unchanged. These numerical results have been obtained
with the following set of normalized parameters: ¢ = 5.107*, o)y = 107>, D = v = 5.107*,
and a grid size equal to 64 x 64. The favourable point is the increase of Asor with
Iy, which is thus potentially able to slightly reduce the thermic constraints on plasma



facing materials. However, this increase remains weak: Agor only increases by a factor
of about 2 when S is multiplied by 80. Assuming a power law dependence would lead
to Asor ~ S?9. Such a result puts forward the crucial interest in alternative means of
controlling the SOL width Asor.

3 Impact of viscosity on the dynamics of turbulence

3.1 Viscosity, Zonal Flows and transport

Recently, turbulent diffusivity y; has been observed to increase with normalized collision
frequency v* in gyrokinetic (GK) numerical simulations of ion temperature gradient (ITG)
turbulence [24]. This result looks surprising because it contradicts linear predictions. In-
deed, for linear instabilities of the Rayleigh-Bénard type, like interchange or ITG, the
Reynolds number R measures the departure from linear marginal stability. R is inversely
proportionnal to the viscosity v. Hence, lowest viscosity cases are linearly the most unsta-
ble since they have the largest R, and should be therefore "the most turbulent” ones with
the largest transport. On the contrary, the observed increase of y; with v* appears in the
nonlinear regime as a consequence of the linear damping of Zonal Flows (ZF) by viscosity.
The reason is the following. Numerous studies, both theoretical [25, 26], numerical [6, 12]
and experimental [27, 28] point out the role of ZF in the regulation of turbulence and,
in fine, in the magnitude and dynamics of turbulent transport. The advocated mecha-
nism for this self-regulation of turbulence relies on the shearing of convective cells by the
self-generated mean poloidal velocity v,, the so-called ZF. Efficient ZI' shearing tends to
reduce the radial correlation of convective cells, hence lowering the transport [29]. Nu-
merical GK simulations show indeed a strong increase in the radial size of convective cells
and in transport when such ZF are artificially suppressed [6]. Hence, ZF magnitude is
of crucial importance in determining the turbulent transport level. An important point
is that ZF are damped by collisions and viscosity. Especially, in the collisionless regime,
ZF are expected theoretically to remain undamped and stable with respect to secondary
instabilities close to the instability threshold [30, 31]. A striking consequence is the abil-
ity of self-generated sheared flows to completely suppress any turbulent transport in GK
simulations of ITG modes run just above the marginal linear stability [32].

As far as SOL transport is concerned, an important issue already mentionned deals
with the capability of fusion devices to increase Agpr in view of spreading the outward
power flux onto the target plates. Theoretically, viscosity emerges from the anisotropy
of the pressure tensor. In fluid codes, the viscosity coefficient v appears as an ad hoc
parameter. It is essential since it ensures the damping of small scale structures. However,
it is usually considered that this term has no impact on the code outputs since, generally,
the turbulence generates a much larger diffusivity or viscosity. In the framework of self-
regulation of turbulence by ZF, the viscosity appears, however, to be a key parameter
[33]. Simulations presented in section 3.2 confirm that it governs the ZF, and hence the
radial extent of the avalanches.

In the system described by Eq. 1, ZF are driven by the Reynolds stress, which domi-
nates by about one order of magnitude over the sheath term. Linear damping of the mean
poloidal velocity v, is then ensured by the viscosity. v, satisfies the following equation:

8,5 ﬁy = —ax ﬁlsﬁy —O'H/QUA_dex ‘I’Vaxxﬁy
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The folllowing section investigates the effect of the normalised viscosity v on both
turbulence dynamics and transport magnitude, which governs the SOL e-folding length
Asor- Special attention is paid to the role of ZF in this regulation.

3.2 Dynamics of Zonal Flows

Two simulations with different values of v have been performed: vy = 5.107% and vy =
2.1072. The linear properties of these two runs are summarized on Fig. 5. The maximum
growth rate for vy, equal to Yomer ~ 11.1072, is about 1.4 times larger than for 1. Linear
damping at small scales is proportionnal to min(D,r)k}. This explains why smaller
scales become linearly unstable for smaller values of v. Quantitatively, linear stability
analysis suggests that structures roughly 1.5 times smaller are expected to develop in
both directions (x and y) for low viscosity (14 case) when compared to large viscosity (14
case). However, the lower k, cut-off wave vector is independent of v, as seen on Fig. 5b.
Indeed, large scales are damped by the sheath conductivity o). Note also that &, = 0
modes are the most linearly unstable modes in both cases, whatever k,. As a consequence,
linear properties do not allow to predict any finite radial length of turbulence. This result
is no longer true when accounting for non monotonuous radial profile of the equilibrium
poloidal velocity v. In this case, the second radial derivative of v is damping large scale

fluctuations, leading to v = —o) — 4:'%1 v"* when k; — 0.

As shown on Fig. 6, v" appears to introduce a linear characteristic radial scale of the
fluctuations. Indeed large radial scales are linearly stable for strong enough v” . Also, the
linear growth rate depends neither on v, which only introduces a Doppler shift, nor on
the velocity shear v’, whose linear system does not depend on. As a result, the break-up
of convective cells along the radial direction by an equilibrium or time dependent (i.e.
ZF) velocity shear is fundamentaly a nonlinear process in the interchange turbulence.

Figures 7-8 show the complex dynamics of ZF in these two runs. First of all, the radial
dynamics of ZF in the lower v case exhibits smaller scales than that of 11. Quantitatively,
the k, Fourier spectrum peaks roughly at the same wave vector in both cases (k, &~ 0.2),
but is about 1.4 larger for vy, extending toward larger k,. In this case, a larger shearing
tk,yv, of turbulence eddies is then expected. Secondly, the typical frequency of case 1y
looks larger than that of case vy. Consistently, the frequency Fourier spectrum is broader
for vy by a factor of 2, except in the low density region in the far SOL (@ > 150), where the
ratio is of order of one. Finally, Fig. 9 shows the root mean square of the fluctuations of
the shear flow, defined as v’ . = ((9,9)*)'/2. Clearly, v’ is larger in the lowest viscosity
case, 1.e. for 1. This result is in agreement with the linear damping of ZF by the viscosity.

An efficient way to quantify the difference between both simulations is also to measure
how they diverge when some random noise is added at a given time to either of the
turbulent fields. To test this idea, white noise (WN) has been added to the potential ¢
at time tg in both 1y and v cases. The simulations are then restarted, and the quantity
<(QBWN — gg)2>1/2 / <95%VN + 952>1/2 (here, (...) refers to [[...dx dy) is recorded at each time.
The result is plotted on Fig. 10. Interestingly, the departure looks roughly exponential
in both cases in the initial phase, before reaching a saturation level where the dynamics
are totally uncorrelated (fluctuations remain however of the same order of magnitude,
as emphasized by the saturation value equal to unity). The normalized exponents at
which simulations diverge, analogous to Lyapunov exponents, are equal to v ~ 2.107>
(Qsto ~ 500) and v, & 5.107* (Q,t; & 2000), respectively for vy = 5.1073 and 1y = 2.1072.
This difference emphasizes the faster dynamics of turbulence at lower value of the viscosity.



This result agrees with the larger shearing at low viscosity, which is expected to decorrelate
more efficiently the radial structures. Furthermore, one recovers the expected increase of
turbulence as viscosity is decreased (Reynolds number).

3.3 Impact on the transport

Ultimately, the impact of ZF and o/ . on turbulent transport is the crucial point. As
already mentionned, v/ . is expected to reduce turbulent transport by shearing the radial
turbulent cells. As a preliminar analysis, the correlation length A.,..; is computed at
each time in both cases. This characteristic length is derived from the normalized 2D
self-correlation function of the electric potential fluctuations, defined as C(;(A:Jc, Ay, t) =

(D(z,y,t).0(x+ Az, y+ Ay, 1))y [{O(z,y,1)?)s,. Figure 11 exemplifies the way the mea-
surement is performed. The points equal to % form an ellipse centered on (Az, Ay) =
(0,0), whose largest diameter defines A.orrer. Acorrer points essentially in the radial direc-
tion. A corresponds to the width of the ellipse in a direction transverse to Acoprer-

It turns out that the smaller the viscosity, the larger the shearing flow, and the smaller
the correlation length, as exemplified on Fig. 12. In the vy case, Ao exhibits very large
transient excursions, almost covering the entire size of the system along the radial direc-
tion. These transient excursions appear sometimes as a percolation mechanism between
radial cells separated by defects. Such structures look very reminiscent of streamers, i.e.
of convective cells characterized by k, ~ 0. Accordingly, the largest avalanches are ob-
served in this simulation, where density fronts extend up to the very far SOL, namely
x = (r—a)/ps > 100. On average, A.orrer is 1.4 times larger for 14 than for vy, Also,
turbulence tends to become more isotropic at small values of the viscosity, since the as-
pect ratio of turbulence eddies A.pprei /AL decreases with v (from about 3.2 at 14 to 2.3 at
). Consistently with the increase of A.oprer With v, turbulent transport is also increased.
The turbulent diffusivity, defined as D.; = —(I')/(d,n), is larger by a factor of about
1.7 in the largest v case, Fig. 13. A statistical analysis is carried out to quantify the
correlation between the dynamics of v/, ., and transport suppression. As a result, density
profile extends farther into the SOL with increasing v, leading to a larger SOL width,

)\SOL-

4 Modification of the SOL bursty transport by probe
measurements

4.1 Current flow pattern due to the turbulent activity

At low (3, electrostatic turbulence dominates the transport process. The development
of a fluctuating electric potential then governs the cross-field transport in the plasma
boundary. The general mechanism to generate such electric fields is the charge separation
driven by the curvature drift. As a consequence, damping of the turbulent activity is
readily associated to electric currents that inhibit charge separation via parallel electron
transport. The sheath resistivity thus plays an essential role in lowering the electric
current and therefore providing optimum conditions for turbulence onset.

In the present 2D fluid model, the cross-field electric currents is balanced by loss terms
that account for parallel transport through the sheath. The flute assumption imposes



constant values along the field lines, in particular that of the electric potential ¢. The
current loss term at the end plates, j), is therefore :

i ZN(l —GXP(A—¢)) (2)
The parameter A is the standard sheath potential drop. Vanishing values of j imposes
that ¢ ~ A. However, as the electric potential fluctuates close to this mean value, electric
currents are driven inwards our outwards at the end points of the field lines depending on
the sign of A—¢. The dependence on n defines the magnitude of the current and stands for
the saturation current jsu¢. (The sound speed does not appear given the normalizations
of the density field in this constant temperature model). It is interesting to note that
when considering the quasilinear value of the parallel current loss, one finds i while a
7/2 phase shift is found for the radial particle flux, typically ikyﬁqg. As a consequence, if
the phase shift between the fluctuating density and electric potential maximises the radial
transport, it will minimise the parallel electric current. This quasilinear behaviour is still
observed in the non-linear regime of the simulations, Fig. 14, where the particle radial
flux nvg, (vE, being the radial component of the electric drift velocity) and the parallel
current n(l —exp (A — qb)) are nearly quadratic in phase, the extremum of one occuring
at zeros of the other.

The strong correlation between the cross-field radial transport and the parallel electric
current loss at the end points of the field lines readily suggests that an external control
of parallel electric current might in turn modify the cross-field transport. The means to
control the parallel current is to bias the area of interest. A change of the wall electric
potential everywhere will have no effect so that one can readily expect that the biasing
geometry must exhibit scales that are comparable to the turbulence scales to have any
impact. A typical case of such a biasing is met with probes [34, 35]. On the basis of
similar ideas, biasing of probes have been used to control the turbulent activity [36] or
for larger probes to trigger edge transport barriers [37] similar to those reported in the H-
mode [38]. In the present paper, we would like to investigate the impact of probe biasing
on the probe measurement itself, both fluctuations and the "macroscopic” value of the
ion saturation current.

4.2 Model for the Langmuir probe, measurement of the ion sat-
uration current

In order to model the probe in the 2D code, the parameter A is modified by an external
control parameter, the probe biasing potential, V};,;. This perturbation is localized both
radialy and poloidaly. Given the limited spacial precision of the code and the spectral
treatement in the numerics, a Gaussian shape is given to Vs of width 10 x p,, Fig. 15.
The electric current through the sheath is then governed by Vj;,s and the plasma response

o

g = n(l — exp (A 4 Viias — Qb)) (3)

When A + Vjus — ¢ — —oco, the probe works in the ion saturation current regime,
the electron current is at 0. This regime is achieved with Vj;,s — —oo and allows to
measure the fluctuations of the ion saturation current in the case of fast data sampling (;,
10 kHz). Slower aquisition rates provide the averaged ion saturation current. A standard
approach for the fluctuation measurements is to neglect the fluctuations of the sound



speed, readily related to temperature fluctuations. The fluctuation of the ion saturation
current is then taken as a measure of the density fluctuations. In the present model
at constant temperature, this is a working assumption. It is important to stress in the
presentation of the model that both ends of the flux tube are biased similarly and that
the flute assumption imposes that the plasma potential ¢ remains constant along the field
line. We believe that the present model of probe biasing measurement in the SOL is
relevant to measurements in magnetized plasmas. However, the various assumptions that
are required to allow the calculation must be kept in mind when analysing the striking
results described in the following.

4.3 Pertubation of the plasma by the probe

In order to investigate the impact of probe biasing on the SOL plasma governed by
the interchange turbulence discussed in this paper, we have restarted a simulation of
the turbulent activity (D = v = 0.01,5, = 0.005), at a time well into the non-linear
(saturated) regime. The control parameter Vi, is varied from 0 to -10 (A = +3.878) in
5 time steps, namely 1.7107%us. This ramp time was implemented to avoid a too strong
perturbation of the system. In practise, it appears that the numerics are rather robust
to this perturbation. After a transient, the plasma potential settles to new profiles as
exemplified on Fig. 15. It is striking to notice that the plasma potential ¢ adjusts to
Viias and reaches more than 75% of the biasing potential. The gaussian shape is the same
as that of Vj;,s which indicates that the perturbation is smooth enough to be properly
accounted for in the numerics. Away from the probe, fluctuations of ¢ around the mean
value A are observed. As a consequence of this very strong response of the plasma potential
to the probe biasing the probe is not fully operating in the saturation current regime.

Let us now consider the relaxation process of the plasma potential, Fig. 16. The
characteristic time is found to be Q,t, ~ 420,t, ~ 1.4pus This relaxation of the plasma
potential governs the evolution of the electronic current, Fig. 17, that settles, after a
transient, to 25% of the saturation current j,., so that the current to the probe is typically
0.75 7sq¢- This indicates that the probe in the present simulation is not biased strongly
enough. Although this would be problematic in real measurements, it has a weak impact
on the present analysis. Indeed, the density is directly accessible in the code. Furthermore,
one can readily expect that the most important features are already captured, the increase
of the biasing potential would only lead to a more pronounced effect. It is therefore our
understanding that such an enhanced biasing would not change the conclusions of our
work.

A clear signature of biasing is also observed on the density trace Fig. 18. When
the probe baising is switched on, one first observes a delay before the density changes.
This delay of Q,t; ~ 1500 is typically the lag time for the electric potential relaxation
(it is then less than 3% away from its new equilibrium value). The characteristic time
for the density relaxation is found to be much longer than for the potential, typically
Qst, ~ 3000,¢, ~ 10us, Fig. 19. This time scale is comparable to the non-linear time
for the divergence of two turbulent cases with neighbouring initial conditions, see section
3.2. It indicates that the drop in the density is governed by a complete rearrangement
of the turbulent fields. Another outstanding feature of this analysis is the density decay
at the probe location, Fig. 19. The density decreases by a factor 4 from 0.6 to 0.15 due
to the biasing. When analysing the poloidal density profile, Fig. 20, at the probe radius,
one can clearly see that the density away from the probe exhibits the same average value



and same large structures, while the density at the probe position, triangular symbol
at af/ps ~ 190, is depressed. A more detailed analysis indicates that the impact of
biasing is not restricted to the probe location. Indeed, the probe biasing will induce
small pertubations at points that are distant from the probe. Given the exponential
growth of the perturbation reported in this paper, section 3.2, one readily expects that the
evolution of any point will be modified when comparing the standard simulation to that
restarted with the biasing switched on. In that case, the distance between the standard
simulation and the restarted simulation grows in time but the behaviour of the density
field is not affected. Closer to the probe, one observes a more profound perturbation with
the appearance of density fronts more frequent and regular in time.

Let us now consider the fluctuations at the probe location. The time traces are too
short to provide a clean statistical analysis. However strong trends can be reported. In
order to address this issue, the density and potential fluctuations have been defined by
subtracting the fit of the signals, Fig. 19 and Fig. 16, from the data. The trace of these
fluctuations, Fig. 21, already give a good insight into the modification of the turbulent
response. For the density fluctuations, one observes the disappearance of the large events
(the avalanches) and the transition to high frequency low amplitude fluctuations. The
response of the electric potential fluctuations is quite different since the large amplitude
fluctuations are still present, Fig. 21. On this trace, the frequency of these large bursts
appears to be higher. Small scale fluctuations at high frequency also seem to be more
important. Although a comprehensive statistical analysis is stil required, one can conclude
that the probe biasing also impacts the fluctuation measurements. Qualitatively, the
large amplitude low frequency fluctuations of the density field are suppressed while the
fluctuations of the electric potential appear to be shifted towards the higher frequencies.
The overall effect on the transport predictions using probe fluctuation measurements is
still to be determined.

5 Conclusion

Modeling of flux-driven 2D interchange turbulence in the Scrape-off Layer of fusion devices
leads to a bursty transport characterized by long range transport events, sometimes called
avalanches. These events are associated with radialy elongated convective cells, which
serve as channels for fronts of density gradient. These rare events are found to account
for a significant part of the overall radial flux, in qualitative agreement with experiments,
and lead to an exponential density profile. The resulting SOL e-folding length, Asor,
is found to increase very weakly with the magnitude of the driving flux. A power law
dependence would yield a scaling in S*/?. The impact of viscosity v on turbulent transport
is emphasized in this paper. Similarly to gyrokinetic simulation results, the turbulent
diffusion coefficient is found to increase with v, leading to a larger SOL width Agoy.
Such a result conflicts with linear analysis, where viscosity essentially reduces the linear
instability by damping small scales. It is understood as resulting from the viscous damping
of sheared zonal flows, which in turn appear to control the radial correlation length
of turbulence. Also discussed in this work is the modification of turbulent transport
by a local biasing, possibly modeling the impact of Langmuir probe measurements. A
negative biasing, resulting in the extraction of 75% of the ion saturation current, is found
to strongly modify the dynamics of the transport, even outside the exact location of
the biasing. At the probe top, one observes a factor 4 decrease of the time averaged
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density and significant changes in the fluctuations. In particular, the large amplitude (i.e.
strong avalanches) low frequency fluctuations of the density field are suppressed. The
electric potential fluctuations exhibit essentially a shift toward larger frequencies. These
results put forward the possible strong departure between Langmuir probe turbulence
measurements and the "real” ambiant turbulence, as well as possible mismatch in the
measurement of the ion saturation current.
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Figure 1: Probability Density Function of the turbulent radial flux. A gaussian of van-
ishing mean flux fits the PDF of the inward flux (negative values).
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Figure 2: Probability Density Function of the radial and poloidal density gradients.
Poloidal gradient exhibits an almost gaussian PDF.
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Figure 3: Time averaged and instantaneous density profiles (case vy = 5.107°). The
source is magnified 500 times.
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Figure 4: Increase of SOL e-folding length Asor, with the driving flux I'y = foLm S(x)dx.
These simulations have been performed with the following set of normalized parameters:
g=510"% 0 =107, D = v =5.107*. The grid size is equal to 64 x 64.
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Figure 5: Normalised linear growth rate for two values of the viscosity. ky(Yimar =~
11.107*) & 0.29 for vy = 5.107° (circles) and ky(Vmar ~ 7.8107%) & 0.22 for vy = 2.1072

(squares).
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Figure 6: Linear growth rate computed at k, = 0.25 with (o);0"”) = (2.3107%; 0) (solid)
and (o3 0") = (0; 2.3107?) (dashed). All other parameters are defined in text. " appears
to introduce a linear characteristic radial scale of the fluctuations.
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Figure 7: Time evolution of v, for vy = 5.1072.

4 Zonal Flows (v1=2.10'2)
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Figure 8: Time evolution of v, for vy = 2.1072.
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Figure 9: Root mean square of velocity shear ((3,0)*)"/2 for vy = 5.107% (circles) and
vy = 2.107% (squares).
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Figure 10: Divergence of two simulations whose potential differs initially by a white noise
of relative magnitude equal to 1072, Divergence of potential is quantified by <(QBWN —
gg)2>1/2 / <95%VN + qp>1/2, where (...) refers to [[...dx dy. Dashed lines refer to divergence
of density. Divergence looks exponential, with v &~ 2.107 for 1 = 5.107 (circles) and
v 2 5.107* for vy = 2.107% (squares).
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Figure 11: Self-correlation function C(;(A:Jc, Ay) of 6 at time t & 11.5us for vy = 2.1072.
The two lines centered on (Ax, Ay) = (0,0) correspond to A.orrer and Ay (see text).
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Figure 12: PDF of the correlation length A,..c;, as defined in the text, for 1 = 5.1073
(circles) and vy = 2.1072 (squares). Dashed lines are Log-normal distributions plotted
"to guide the eyes”.

18



Des (V1) / Dt (Vo)

0 50 100 150 200
X =(r-a) / pg

Figure 13: Ratio between effective diffusivities D.sr = —(I')/(8,7) of 15 = 5.1072 and
vy = 2.1072 cases.
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Figure 14: Poloidal variation of the cross-field particle flux, '), and parallel electric
current jj. These remain nearly quadratic in phase even in this non-linear phase.
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Figure 15: Radial profile of the floating potentiel and of the externally applied electric
potential. The probe is localized at (r — a)/ps &~ 100. In this model, the probe is quite
massive, typically 10 p,. The plasma potential accounts for most of the externally imposed
electrostatic potential.
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Figure 16: Evolution of the plasma potential at the probe (plain line) in response to the
probe biasing (dash-dot line). Blow-up, characteristic time of this relaxation Q¢ /2 423.
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Figure 17: Evolution of the electronic current at the probe, after a sharp decrease to zero
the electronic current settles at 25% of the saturation current. The characteristic time of
this relaxation is that of the plasma potential, (),¢ & 423.
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Figure 18: Evolution of the density at the probe, before biasing with Q¢ < 0 and after
biasing with Q¢ > 0 (plain curve). The fluctuations are significantly reduced with biasing
and a relaxation of the mean density is observed. The dashed curve is the output from
the simulation with no biasing all along the simulation.
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Figure 19: Evolution of the density at the probe, before biasing with Q¢ < 0 and after
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Figure 20: Profile of the density in the poloidal direction at the probe radial position,
with the time averaged profile, the density at a given time as well as the location of the
probe at afl/p, = 190 and a reference point at af/ps ~ 100. The time average includes a
significant part of the relaxation so that the average value plotted here is larger than the
steady state value.
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Figure 21: Traces of the density and electric potential fluctuations at the probe. The
fluctuation data is obtained by substracting the fit of the relaxation Fig. 19 and of the
electric potential. As in previous graphs, time zero marks the beginning of the probe
biasing.
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